
Practice Questions for Graph Theory
Representation, Search Algorithms, and Variants for Problem Solving

Raghav B. Venkataramaiyer

Feb ’25

1 Graph Representations

1.1 Fundamentals

Question 1 Are graphs useful in real world? Support your answer with
examples from your domain.

Question 2 What is the difference between adjacency list and adjacency
matrix? Cite real world examples of usage.

Hint: List is compact, whereas Matrix is detailed. List makes more sense in
sparse graphs, and Matrix in dense ones.

Question 3 If G(V,M) represents a given graph G with a set of vertices
V and adjacency matrix M , what is the significance of a transpose graph
G⊤(V,M⊤)? Cite examples from your domain for emphasis.

Hint: The edges in G⊤ are reversed when compared against those in G. (See
also: § 1.3)

Question 4 Comment on the nature of graph G(V,M +M⊤) where M is
a square matrix with empty diagonals.

Hint: If M consists of forward edges, then it follows that M⊤ corresponding
are reverse edges; hence M +M⊤ consists of bi-directional edges. (See also:
§ 1.3)

1

1.2 Vertex Insertion

Question ABCD is a closed quadrilateral. A new vertex E is introduced
between B and C. Show the adjacency lists before and after the introduction
of E. Hence, write an algorithm/ pseudocode in order to introduce a new
vertex between an existing edge.

Interpretation Given a closed quadrilateral ABCD , the adjacency list in
1-indexed format is given as:

V = [A, B, C, D]
Adj = [[2, 4], # 1 is connected to 2 and 4

[1, 3], # 2 is connected to 1 and 3
[2, 4], # and so forth
[1, 3]]

Here the edge BC is defined in two entries of the adjacency list, i.e. as
vertex 3 in Adj[2] and vertex 2 in Adj[3].

Solution In order to introduce a new vertex E between edge BC ,

Step 1 Append vertex E to the vertex list V and get its index.

V = [A, B, C, D, E] # Add E as V[5]

Step 2 Remove the edge BC

V = [A, B, C, D, E]
Adj = [[2, 4],

[1], # remove 3 from Adj[2]
[4], # remove 2 from Adj[3]
[1, 3],
[]] # add empty Adj[5]

Step 3 Add edges BEC

V = [A, B, C, D, E]
Adj = [[2, 4],

[1, 5], # add 5 to Adj[2]
[4, 5], # add 5 to Adj[3]
[1, 3],
[2, 3]] # add 2, 3 to Adj[5]

2

Algorithm To introduce a vertex W between an edge (u, v),

GRAPH_ADD_VERTEX_BW(G,W,u,v) :
w = G.V.append(W) # Insert W into list of

vertices and store the
last appended index.

G.Adj[u].remove(v) # Remove v from Adj[u]
G.Adj[v].remove(u) # Remove u from Adj[v]

G.Adj[u].append(w) # Append w into Adj[u]
G.Adj[v].append(w) # Append w into Adj[v]

G.Adj[w].append(u) # Append u into Adj[w]
G.Adj[w].append(v) # Append v into Adj[w]

PS: Here, W in uppercase refers to a variable (i.e. vertex information like
coordinates of a point etc.) that needs to appended into the list of verts G.V .
And (u, v) represent the indices of the pair of verts that constitute and edge.
We are interested in the Adjacency List (as required by the question,) hence
the use of G.Adj

1.3 Transpose Graph

Question Given a graph G(V,M), M being the adjacency matrix. A
transpose graph would be the one with same set of vertices, but a transposed
adjacency matrix, i.e. G⊤(V,M⊤). What does a transpose graph represent?
Illustrate with a drawing to support your answer.

Interpretation Recall that,

1. In an adjacency matrix A, the component at ith row, and jth column
is given as aij and it represents whether the edge vi → vj exists.

2. A transpose graph G⊤(V,M⊤) would be any different, iff M ̸= M⊤.
In other words, if G is a directed graph.

3. The components in the transposed matrix are mirrored across the
diagonal. Hence, if B = A⊤, then bij = aji.

Solution Each edge vi → vj in G, transforms to vj → vi in the transpose
graph G⊤. In other words, the edges are reversed.

3

This would be any different, only in case of a directed graph. Since for
an undirected graph M = M⊤. Hence, the transpose graph G⊤(V,M⊤)
represents G(V,M) with edges reversed.

Illustration

M =

0 1 0
0 0 1
1 0 0

 M⊤ =

0 0 1
1 0 0
0 1 0

 M +M⊤ =

0 1 1
1 0 1
1 1 0

Figure 1: Graph and its Transpose

1.4 (In/Out)-degree

Question What is the average in-degree of a graph G(V,E), where E is
the set of edges in G?

Solution In-degree of a vertex is defined as the number of edges leading
onto itself.

Let din(v) represent the in-degree of vertex v. Then the average in-degree is
given as the sum of in-degrees divided by the size of number of verts,

E[din(v)] =
∑

v∈V din(v)

|V |

Intuitively speaking, the sum of all in-degrees is the same as the number of
edges. Hence,

E[din(v)] =
|E|
|V |

4

In further detail In-degree of a vertex is the same as counting the non-
zeros in one (specific) column of an adjacency matrix representation M for
the set of edges E.

Similarly, the sum
∑

v∈V din(v) is equivalent to

• Counting the non-zeros for every the column of M ,

• i.e. Counting all the non-zeros in M ,

• i.e. The number of edges.

Hence,

∑
v∈V

din(v) = |E|

1.5 Representation

Question Provide an adjacency list as well as the adjacency matrix rep-
resentation for trees A and B in the following figure.

(a) Tree A
(b) Tree B

Solution

Tree A

Adj = [[2 3]
[1 4 5]
[1 6 7]
[2]
[2]

5

[3]
[3]]

M = [[0 1 1 0 0 0 0]
[1 0 1 1 0 0 0]
[1 0 0 0 1 1 0]
[0 1 0 0 0 0 0]
[0 1 0 0 0 0 0]
[0 0 1 0 0 0 0]
[0 0 1 0 0 0 0]]

Tree B

Adj = [[2]
[1 3 4]
[2]
[2 6]
[6]
[4 5 7]
[6]]

M = [[0 1 0 0 0 0 0]
[1 0 1 1 0 0 0]
[0 1 0 0 0 0 0]
[0 1 0 0 0 1 0]
[0 0 0 0 0 1 0]
[0 0 0 1 1 0 1]
[0 0 0 0 0 1 0]]

PS The Adjacency matrix of Tree B is bi-symmetric.

2 Elementary Algorithms

2.1 Fundamentals

Question 1 Cite examples to highlight the difference between when and
why to prioritise the use of BFS in stead of DFS, and vice-versa.

Question 2 What operations are performed while visiting a vertex v dur-
ing BFS. How are they different from visiting a vertex v during DFS?

6

Hint: One iteration of while loop is a visit during BFS, whereas visit in a
DFS finishes only after all successors have been visited.

PS: The answer to this question is also the difference between stacked and
queued operations in general.

Question 3 Visiting a vertex in BFS assigns three vertex properties. De-
scribe them highlighting their importance in problem solving in general.

Hint: Discovery time is also the distance from source; and following the
parent is the shortest path to source.

Question 4 How is DFS useful in real world? Emphasise the significance
of discovery and finish times in your example?

Question 5 At any instant, during the DFS, how does the colour of a
node, help determining the edge classification?

Hint: See this slide

Question 6 How can DFS be used to detect cycles in a graph? Comment.

Question 7 How can parenthesis structure of a DFS help determine de-
pendencies and relationships?

Variants:

1. A project is subdivided into tasks, and it has been understood that
some tasks are dependent upon others. How would you determine
if one task must be completed before another? Write an algorithm/
pseudocode for the same.

Hint: “One task must be completed before another” implies an order.

2. Given a large family database, with parent-child relationships be-
tween individuals, how would you determine if at all related (directly),
Jaspreet is ancestor/descendant of Dilraj?

Hint: Parenthesis structure exhibits direct relationships.

See Also: § 2.4

7

https://docs.google.com/presentation/d/14PY-Sc50QsFxdUqZk7GlYVwwEXzO38rg9z9KKx5ti0k/edit#slide=id.g32a7028b731_0_422

Figure 3: Graph A

2.2 BFS

Question With reference to Graph A (see Fig 3) Determine algorith-
mically,

1. The shortest path weight δ(u, j) for the pair (u, j) of vertices.

2. A shortest path between the pair (u, j) of vertices.

3. All shortest-paths originating from vertex u.

Key Insight All the three questions here speak about a shortest path
originating from vertex u. This is a uniformly weighted undirected graph,
i.e. all edges are equally weighted. The solution for shortest path will follow
a BFS in such a case.

Solution

1. Running a BFS on the graph gives us the figure, “BFS on Graph A”
(Fig 4) upon termination.

2. The numbers marked are discovery times of the nodes
v · d ∀v ∈ V .

8

Figure 4: BFS on Graph A

9

3. For part (1) the shortest path weight is given as δ(u, j) = j · d− u · d.
Computing from the figure, δ(u, j) = 4− 0 = 4.

4. For part (2) we may pick any one path such that each successive node
is from successive level. i.e. one of,

(a) ⟨u, v, h, i, j⟩,

(b) ⟨u, v, w, y, j⟩, or

(c) ⟨u, v, x, y, j⟩.

Recall, that only one of these is, and not all of them are, the required
shortest path (i.e. discovered in one run).

5. For part (3), a BFS tree is required. It’s been left that upon the reader
to exercise and present as necessary. An easy way out would be to use
the adjoining graph (Fig 4) and additionally mark each connection
from “parent” to “child” as descended during the BFS. Note that the
arrow would be a manifestation of line v.PI = u in the algorithm (link
to the slide). Recall that there may be only one parent to a child, not
many, and that the discovery time of the parent is always less than
that of the child.

2.3 DFS

Question Given that there are 10 courses in a programme, and corre-
sponding pre-requisites are listed as under, determine algorithmically If
the programme may be completed successfully by a candidate?

1. depends upon 2 and 3;

2. depends upon 3 and 4;

3. depends upon none;

4. depends upon none;

5. depends upon 4 and 6;

6. depends upon none;

7. depends upon 5 and 8;

8. depends upon 4, 6 and 10;

9. depends upon 2, 4 and 8;

10

https://docs.google.com/presentation/d/14PY-Sc50QsFxdUqZk7GlYVwwEXzO38rg9z9KKx5ti0k/edit#slide=id.g32a7028b731_0_60
https://docs.google.com/presentation/d/14PY-Sc50QsFxdUqZk7GlYVwwEXzO38rg9z9KKx5ti0k/edit#slide=id.g32a7028b731_0_60

10. depends upon 6 and 9.

Key Insight We define a relationship u → v if course u depends upon v
(i.e. if course v is a pre-requisite of course u). Then we get a dependency
graph (i.e. a directed graph where relationship is defined when the parent
is dependent upon the child).

A topological order T ≡ ⟨v1, . . . , vk⟩ of such a graph means that all ancestors
of vi have been listed before vi itself ∀vi ∈ V . In simple words, the topolog-
ical order is one possible order of courses to complete the programme.

However, the topological order is not always possible. From our slides,
we know that topological order is defined only for a directed acyclic graph
(DAG). Hence, one may complete the programme iff the depen-
dency graph is acyclic.

And a graph is acyclic if and only if there are no back edges.

Solution

1. Run a DFS on Dependency Graph;

2. Maintain a list T for Topological Order;

3. Upon finishing the visit to a node, insert the node to the front of the
list;

4. Exit “abnormally,” if encountered a “back edge.”

If exited abnormally, the graph has a cycle; and the programme can not be
completed successfully.

Otherwise, the graph is acyclic, and T contains an order of courses that
successfully completes the programme.

In figure “DFS on Dependency Graph,” (Fig 5) nodes have been mentioned
with discovery and finish times; and edges have been labelled as B,C,F,T
for back edges, cross edges, forward edges and tree edges respectively.

The algorithm terminated upon visiting the edge 9 → 8 which is a back edge
(labelled B).

Hence the programme can not be completed.

11

https://docs.google.com/presentation/d/14PY-Sc50QsFxdUqZk7GlYVwwEXzO38rg9z9KKx5ti0k/edit#slide=id.g32a7028b731_0_377

Figure 5: DFS on Dependency Graph

12

2.4 DFS Parenthesis Structure

Question In DFS, discovery and finishing times are indicators of ancestry.
Comment.

Solution

1. When DFS discovers a vertex u, it marks the discovery time u · d (the
left parenthesis).

2. When DFS finishes visit to all the neighbours of u, it marks the fin-
ishing time u · f (the right parenthesis).

3. If u is an ancestor of vertex v in the DFS tree, then,

• u was discovered before v, i.e. u · d < v · d;

• The visit of u was finished after that of v, i.e. v · f < u · f ; and

• Thus, discovery/finish interval of u completely encloses that of v.

3 Problem Solving

3.1 Three jug problem

Question There are three unmarked jugs A,B,C with a capacity of 8, 5
and 3 units respectively. Possible moves may either empty a can into another
or fill the other, whichever occurs earlier. Starting with A8, B0, C0, deter-
mine algorithmically if and how we can reach to a split of A4, B4, C0.

Key Insight

1. The jugs are unmarked. Hence, there is no way to determine any
intermediate quantity while pouring.

2. For every state reachable from any other state, at least one of the jugs
is either empty or full. This is a direct consequence of a possible move
(action,) as defined in the problem.

3. Each jug may be poured into the other two, so there may be 6 actions.
But at every state, at least one jug is empty or full; the number of
actions is limited to 4.

4. Some moves are reversible, e.g. A8, B0, C0 ⇌ A3, B5, C0. As a con-
sequence, the resultant state graph is cyclic in nature.

13

Figure 6: BFS on State Graph

Solution

State Space is a 3-vector v ≡ Aa,Bb, Cc that satisfies,

0 ⩽
[
a b c

]⊤ ⩽
[
8 5 3

]⊤
a+ b+ c = 8

Start State s = A8, B0, C0

Actions Pour from jug, until the latter is full, or else empty the former.

Since the state graph is cyclic in nature, our solution is based out of BFS.
See Fig. 6.

3.2 Three jug problem 2

Question There are three unmarked jugs A,B,C with a capacity of 8,
5 and 3 units respectively. Possible moves may either empty a can into

14

another or fill the other, whichever occurs earlier. Starting with A8, B0, C0,
can we can reach to a split of A4, B3, C1.

Solution (This is a logical deduction, not an algorithmic solution.)

From our key insights (earlier),

For every state reachable from any other state, at least one of
the jugs is either empty or full.

The state A4, B3, C1 has neither of the jugs empty, nor full! Hence this
is not a reachable state!

15

	Graph Representations
	Fundamentals
	Vertex Insertion
	Transpose Graph
	(In/Out)-degree
	Representation

	Elementary Algorithms
	Fundamentals
	BFS
	DFS
	DFS Parenthesis Structure

	Problem Solving
	Three jug problem
	Three jug problem 2

