Machine Learning Notes Prerequisites, Regression and Classification

Raghav B. Venkataramaiyer

Feb '25

1 Setup

- 1. Given is a set of paired observations \mathcal{D} (aka evidence), where targets $y \in \mathbb{R}$ are paired with (d dimensional) features $\mathbf{x} \in \mathbb{R}^d$.
- 2. We propose a mathematical model (typically a family of functions) $\mathcal{F}_{\boldsymbol{\theta}} : \mathbb{R}^d \to \mathbb{R}$ parameterised by $\boldsymbol{\theta}$
- 3. So that $y \approx \mathcal{F}_{\theta_*}(\mathbf{x})$. Here y are referred to as targets, $\mathcal{F}_{\theta}(\mathbf{x})$ are referred to as predictions; so that predictions approximate the targets, under optimal set of learnt parameters, θ_* .
- 4. We express this formally as: Find $\theta = \theta_*$ in order to

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{y}, \mathbf{x} \sim \mathcal{D}} \left[\Delta(\boldsymbol{y}, \mathcal{F}_{\boldsymbol{\theta}}(\mathbf{x})) \right]$$

where, Δ is the notion of distance between predictions $\mathcal{F}_{\theta}(\mathbf{x})$ and targets y.

2 Linear Regression

2.1 In 2D

$$y \approx \mathcal{F}_{w,b}(x) = wx + b$$
$$\Delta(y, \mathcal{F}_{w,b}(x)) = \frac{1}{2} (y - \mathcal{F}_{w,b}(x))^2$$

The objective is to find $w = w_*, b = b_*$ in order to

minimise
$$\mathbb{E}_{\substack{w,b}} \mathbb{E}_{y,x \sim \mathcal{D}} \left[\frac{1}{2} \left(y - \mathcal{F}_{w,b}(x) \right)^2 \right]$$

The analytical solution yields,

$$w_* = \frac{\operatorname{coVar}(x, y)}{\operatorname{Var}(x)}$$
$$b_* = \mathbb{E}[y] - w_* \mathbb{E}[x]$$
$$\operatorname{coVar}(x, y) = \mathbb{E}[xy] - \mathbb{E}[x]\mathbb{E}[y]$$
$$\operatorname{Var}(x) = \mathbb{E}[x^2] - \mathbb{E}^2[x]$$

2.2 In Higher Dimensions

$$y \approx \mathcal{F}_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} = \mathbf{x}^{\top} \mathbf{w}$$

= $w_0 + w_1 x_1 + \dots + w_d x_d$ ($x_0 = 1$)
$$\Delta (y, \mathcal{F}_{\mathbf{w}}(\mathbf{x})) = \frac{1}{2} (y - \mathcal{F}_{\mathbf{w}}(\mathbf{x}))^2$$

= $\frac{1}{2} (y - \mathbf{x}^{\top} \mathbf{w})^2$

The objective is to find $\mathbf{w}=\mathbf{w}_*$ in order to

$$\begin{array}{rcl} \text{minimise} & \mathbb{E}_{y,\mathbf{x}\sim\mathcal{D}}\left[\frac{1}{2}\left(y-\mathbf{x}^{\top}\mathbf{w}\right)^{2}\right]\\ \text{or, minimise} & \frac{1}{2}(\mathbf{y}-X\mathbf{w})^{\top}(\mathbf{y}-X\mathbf{w})\\ \text{where, } \mathbf{y} \equiv \begin{bmatrix} y_{1}\\ \vdots\\ y_{N} \end{bmatrix} & X \equiv \begin{bmatrix} \mathbf{x}_{1}^{\top}\\ \vdots\\ \mathbf{x}_{N}^{\top} \end{bmatrix} \end{array}$$

The analytical solution yields,

$$\mathbf{w}_* = (X^\top X)^{-1} X^\top \mathbf{y}$$

2.3 Implementation

2.3.1 In Spreadsheet

This (Google Sheet) will help understand and practice computing the solution manually for the case in 2D.

2.3.2 In Code

This (Gist) is a reference python implementation of the analytical solution.

3 Logistic Regression

(Binary Classification)

$$y \approx \tilde{y} = \mathcal{F}_{\mathbf{w}}(\mathbf{x}) = \sigma(\mathbf{x}^{\top}\mathbf{w})$$
$$\Delta(y, \tilde{y}) = -(y \ln \tilde{y} + (1 - y) \ln(1 - \tilde{y}))$$
$$\frac{\partial \Delta(y, \tilde{y})}{\partial \mathbf{w}} = -(y - \tilde{y})\mathbf{x}$$

The objective is to find $\mathbf{w} = \mathbf{w}_*$ in order to

Theres no analytical solution. But using gradient descent, we numerically hope to converge using iterative update,

$$\mathbf{w} \leftarrow \mathbf{w} - \lambda \frac{\partial \mathcal{L}}{\partial \mathbf{w}} \\ = \mathbf{w} + \lambda \mathop{\mathbb{E}}_{y, \mathbf{x} \sim \mathcal{D}} \left[(y - \widetilde{y}) \mathbf{x} \right]$$

Corrigendum 2025-02-22

- 1. Typo in Binary Cross Entropy Loss. Earlier mentioned: $\Delta = y \ln \tilde{y} + \cdots$. This has been corrected now.
- 2. By cascading effect, $\partial \Delta / \partial \mathbf{w}$, and the update step for gradient descent algorithm also have been corrected.

4 Support Vector Machine

Figure 1: SVM Theory Illustration

- 1. Given a dataset \mathcal{D} with paired samples $(y, \mathbf{x}); y \in \{+1, -1\}$ so that positive samples are labeled y = +1, and similarly negative samples as y = -1.
- 2. To evaluate for a simple case, lets assume that the positive and negative samples are comfortably separable through **a hyperplane**. In case of 2D data ($\mathbf{x} \in \mathbb{R}^2$), it would follow from the assumption that there exists a straight line with a finite margin, called **gutter space** such that,
 - (a) There are no samples in the gutter space;
 - (b) Positive samples lie on one side of the hyperplane; and
 - (c) Negative samples lie on the other side.

- 3. Our aim is to find the straight line that maximises the gutter space.
- 4. Let the separating hyperplane (straight line in case of 2D data) be given as,

$$\mathbf{w} \cdot \mathbf{x} + b = 0 \tag{1}$$

Geometrically speaking, **w** is a vector normal to the separating hyperplane. And the unit vector in the same direction is given as $\mathbf{w}/\|\mathbf{w}\|_2$. Where $\|\mathbf{w}\|_2$ is called the Frobenius Norm and $\|\mathbf{w}\|_2^2 = w_1^2 + \cdots + w_d^2$. This is the same as the understanding of magnitude of the vector in Euclidean space.

- 5. The hyperplane separates the space such that One side of it satisfies $\mathbf{w} \cdot \mathbf{x} + b < 0$; and The other side satisfies $\mathbf{w} \cdot \mathbf{x} + b > 0$.
- 6. From the separability assumption, it follows,

$$\mathbf{w} \cdot \mathbf{x} + b < 0 \quad \forall y = -1 \\ \mathbf{w} \cdot \mathbf{x} + b > 0 \quad \forall y = +1$$

7. From the margin assumption, without loss of generality, it follows that

$$\mathbf{w} \cdot \mathbf{x} + b \leqslant -1 \quad \forall y = -1$$
$$\mathbf{w} \cdot \mathbf{x} + b \geqslant 1 \quad \forall y = +1$$

8. In other words

$$y(\mathbf{w} \cdot \mathbf{x} + b) \ge 1 \tag{2}$$

9. For the points on the margin, denoted as $\mathbf{x}_+, \mathbf{x}_-$ in the adjoining image,

$$\mathbf{w} \cdot \mathbf{x}_{+} + b = 1$$
$$\mathbf{w} \cdot \mathbf{x}_{-} + b = -1$$
$$\mathbf{w} \cdot (\mathbf{x}_{+} - \mathbf{x}_{-}) = 2$$
(3)

10. The gutter width γ is given as the projection of vector $\mathbf{x}_{+} - \mathbf{x}_{-}$ along the normal to the hyperplane. Or,

$$\gamma = \frac{\mathbf{w}}{\|\mathbf{w}\|_2} \cdot (\mathbf{x}_+ - \mathbf{x}_-)$$
$$= \frac{\mathbf{w} \cdot (\mathbf{x}_+ - \mathbf{x}_-)}{\|\mathbf{w}\|_2}$$
$$\gamma = \frac{2}{\|\mathbf{w}\|_2}$$
(4)

Our aim is to maximise the gutter width γ , which would be the same as minimising $1/\gamma$, or $1/\gamma^2$, or $4/\gamma^2 = \|\mathbf{w}\|_2^2$.

4.1 Training

Formally speaking, we need to find the parameters \mathbf{w}, b in order to

minimise
$$\|\mathbf{w}\|_2^2$$

subject to, $y(\mathbf{w} \cdot \mathbf{x} + b) \ge 1$

4.2 Inference

For all unseen points, **x**, the estimated label \hat{y} is given as,

$$\widehat{y} = \operatorname{signum}(\mathbf{w} \cdot \mathbf{x} + b) \tag{5}$$

4.3 Implementation

Check out this gist